In a previous post, I shared a comprehensive guide on implementing Incremental Data Refresh in Power BI Desktop. We covered essential concepts such as truncation and load versus incremental load, understanding historical and incremental ranges, and the significant benefits of adopting incremental refresh for large tables. If you missed that post, I highly recommend giving it a read to get a solid foundation on the topic.
Now, let’s dive into Part 2 of this series where we will explore tips and tricks for implementing Incremental Data Refresh in more complex scenarios. This blog follows up on the insights provided in the first part, offering a deeper understanding of how Incremental Data Refresh works in Power BI. Whether you’re a seasoned Power BI user or just getting started, this post will provide valuable information on optimising your data refresh strategies. So, let’s begin.
When we publish a Power BI solution from Power BI Desktop to Fabric Service, we upload the data model, queries, reports, and the loaded data into the data model to the cloud. In essence, the Power Query queries, the data model and the loaded data will turn to the Semantic Model and the report will be a new report connected to the semantic model with Connect Live storage mode to the semantic model. If you are not sure what Connect Live means, then check out this post where I explain the differences between Connect Live and Direct Query storage modes.
The Publish process in Power BI Desktop makes absolute sense in the majority of Power BI developments. While Power BI Desktop is the predominant development tool to implement Power BI solutions, the publishing process is still not quite up to the task, especially on more complex scenarios such as having Incremental Data Refresh configured on one or more tables. Here is why.
As explained in this post, publishing the solution into the service for the first time does not create the partitions required for the incremental refresh. The partitions will be created after the first time we refresh the semantic model from the Fabric Service. Imagine the case where we successfully refreshed the semantic model, but we need to modify the solution in Power BI Desktop and republish the changes to the service. That’s where things get more complex than expected. Whenever we republish the new version from Power BI Desktop to Fabric Service, we get a warning that the semantic model exists in the target workspace and that we want to Overwrite it with the new one. In other words, Power BI Desktop currently does not offer to apply the semantic model changes without overwriting the entire model. This means that if we move forward, as the warning message suggests, we replace the existing semantic model and the created partitions with the new one without any partitions. So the new semantic model is now in its very first stage and the partitions of the table(s) with incremental refresh are gone. Of course, the partitions will be created during the next refresh, but this is not efficient and realistically totally unacceptable in production environments. That’s why we MUST NOT use Power BI Desktop for republishing an already published semantic model to avoid overriding the already created tables’ partitions. Now that Power BI Desktop does not support more advanced publishing scenarios such as detecting the existing partitions created by the incremental refresh process, let’s discuss our other options.
Alternatives to Power BI Desktop to Publish Changes to Fabric Service
While we should not publish the changes from Power BI Desktop to the Service, we can still use it as our development tool and publish the changes using third-party tools, thanks to the External Tools support feature. The following subsections explain using two tools that I believe are the best.
Continue reading “Incremental Refresh in Power BI, Part 2; Best Practice; Do NOT Publish Data Model Changes from Power BI Desktop”