If you have a lot of report pages in your Power BI reports you already realised that it is such a pain to click the left/right buttons to navigate through different pages. Well, you can simply right click on the left/right buttons which opens a list of your pages, then select a desired page. Easy!
Good news! This feature is also available in Power BI Service.
A while ago I was visiting a customer that asked if they can filter a query data by a column from another query in Power BI. And I said of course you can. In this post I explain how that can be achieved in Power Query. The key point is to know how to reference a query and how to reference a column of that query in Power Query. This is useful when you have a lookup table that can be sourced from every supported data source in Power Query and you want to filter the results of another query by relevant column in the lookup query. In that case, you’ll have a sort of dynamic filtering. So, whenever you refresh your model if new records have been changed in or added to the source of the lookup query, your table will automatically include the new values in the filter step in Power Query.
Referencing a Query
It is quite simple, you just need to use the name of the query. If the query name contains special characters like space, then you need to wrap it with number sign and double quotes like #”QUERY_NAME”. So, if I want to reference another query, in a new blank query, then the Power Query (M) scripts would look like below:
let
Source = Product
in
Source
Or something like
let
Source = #"Product Category"
in
Source
Referencing a Column
Referencing a column is also quite simple. When you reference a column you need to mention the referencing query name, explained above, along with the column name in brackets. So, the format will look like #”QUERY_NAME”[COLUMN_NAME]. The result is a list of values of that particular column.
let
Source = #"Product Category"[Product Category Name]
in
Source
In an article I posted a while back I showed different methods of creating Time dimension in Power BI and Tabular models. The Time dimension I explained was in Minutes. In this post I show you simple way to create Time dimension supporting Seconds. As this is a quick tip, I only show you how to get the Time and ID columns in the Time dimension. If you need to add time bands (time buckets) check this out for more details.
Time Dimension in Seconds Grain with Power Query (M):
Copy/paste the code below in Advanced Editor to generate Time dimension in Power Query:
let
Source = Table.FromList({1..86400}, Splitter.SplitByNothing()),
#"Renamed Columns" = Table.RenameColumns(Source,{{"Column1", "ID"}}),
#"Time Column Added" = Table.AddColumn(#"Renamed Columns", "Time", each Time.From(#datetime(1970,1,1,0,0,0)+#duration(0,0,0,[ID]))),
#"Changed Type" = Table.TransformColumnTypes(#"Time Column Added",{{"ID", Int64.Type}, {"Time", type time}})
in
#"Changed Type"
Time Dimension in Seconds Grain with DAX:
Run the DAX expression below in a new calculated Table in Power BI or SSAS Tabular model:
Time in DAX = ADDCOLUMNS(
GENERATESERIES(1, 86400, 1)
, "Time", TIME(0, 0, 0) + [Value]/86400
)
If you are a Business Intelligence consultant working on Power Platform, Azure Logic Apps and Azure Analysis Services landscape, you probably know that On-premises Data Gateway cab be one of the most essential parts of your engagements with your customers. In many cases, installing On-premises Data Gateway can be a one-man-band job but in many others, it requires teamwork effort. Either way, it can go smoothly if you already have a well-thought implementation plan otherwise, it can quickly turn into a beast that can exhaust the whole implementation team and the customer for some days.
In this post, I do my best to provide you with some guidelines that can help you with your On-premises Data Gateway implementation planning. This post may look rather long, and some of the points are generic, but it is worthwhile mentioning them. Consider the following points before, during and after the engagement:
Understanding the use cases
Culture of the engagement
Environments (Dev, UAT, Prod)
Communication
Security
Corporate/environmental firewalls
Proxy Servers
Identity Access Management
People
Documentation
Installation, configuration, and testing
Here is a diagram of the important points that you should consider:
Implementing On-premises Data Gateway
Use cases
You need to understand the use cases of On-premises Data Gateway (Standard Gateway) for your customer. If they need the gateway for their Power Platform, Azure Logic Apps, Azure Analysis Services or all of them. This is important as you either need to have access to your customer’s Power BI Service or Azure Portal or both, or you need to assist your customer to configure On-premises Data Gateway in Azure or in Power BI Service. The next points are:
Accessing customer’s Azure Portal and/or Power BI Service: The customer to decide whether to create a new account with sufficient rights for you or give you the credentials of an existing account. It is important to make sure you can access all environments and you have necessary rights to install/configure the gateway
You assist/consult a person at customer side with the implementation: you need to make sure you communicate with that person and see if he/she understands the requirements before the implementation date. Send them a calendar invitation beforehand to make sure he/she is present at that date. Always ask for a backup person just in case of an emergency happening to the primary person.