Business Intelligence Components and How They Relate to Power BI

Business Intelligence Components and How They Relate to Power BI

When I decided to write this blog post, I thought it would be a good idea to learn a bit about the history of Business Intelligence. I searched on the internet, and I found this page on Wikipedia. The term Business Intelligence as we know it today was coined by an IBM computer science researcher, Hans Peter Luhn, in 1958, who wrote a paper in the IBM Systems journal titled A Business Intelligence System as a specific process in data science. In the Objectives and principles section of his paper, Luhn defines the business as “a collection of activities carried on for whatever purpose, be it science, technology, commerce, industry, law, government, defense, et cetera.” and an intelligence system as “the communication facility serving the conduct of a business (in the broad sense)”. Then he refers to Webster’s dictionary’s definition of the word Intelligence as the ability to apprehend the interrelationships of presented facts in such a way as to guide action towards a desired goal”.

It is fascinating to see how a fantastic idea in the past sets a concrete future that can help us have a better life. Isn’t it precisely what we do in our daily BI processes as Luhn described of a Business Intelligence System for the first time? How cool is that?

When we talk about the term BI today, we refer to a specific and scientific set of processes of transforming the raw data into valuable and understandable information for various business sectors (such as sales, inventory, law, etc…). These processes will help businesses to make data-driven decisions based on the existing hidden facts in the data.

Like everything else, the BI processes improved a lot during its life. I will try to make some sensible links between today’s BI Components and Power BI in this post.

Generic Components of Business Intelligence Solutions

Generally speaking, a BI solution contains various components and tools that may vary in different solutions depending on the business requirements, data culture and the organisation’s maturity in analytics. But the processes are very similar to the following:

  • We usually have multiple source systems with different technologies containing the raw data, such as SQL Server, Excel, JSON, Parquet files etc…
  • We integrate the raw data into a central repository to reduce the risk of making any interruptions to the source systems by constantly connecting to them. We usually load the data from the data sources into the central repository.
  • We transform the data to optimise it for reporting and analytical purposes, and we load it into another storage. We aim to keep the historical data in this storage.
  • We pre-aggregate the data into certain levels based on the business requirements and load the data into another storage. We usually do not keep the whole historical data in this storage; instead, we only keep the data required to be analysed or reported.
  • We create reports and dashboards to turn the data into useful information

With the above processes in mind, a BI solution consists of the following components:

  • Data Sources
  • Staging
  • Data Warehouse/Data Mart(s)
  • Extract, Transform and Load (ETL)
  • Semantic Layer
  • Data Visualisation

Data Sources

One of the main goals of running a BI project is to enable organisations to make data-driven decisions. An organisation might have multiple departments using various tools to collect the relevant data every day, such as sales, inventory, marketing, finance, health and safety etc.

The data generated by the business tools are stored somewhere using different technologies. A sales system might store the data in an Oracle database, while the finance system stores the data in a SQL Server database in the cloud. The finance team also generate some data stored in Excel files.

The data generated by different systems are the source for a BI solution.

Staging

We usually have multiple data sources contributing to the data analysis in real-world scenarios. To be able to analyse all the data sources, we require a mechanism to load the data into a central repository. The main reason for that is the business tools required to constantly store data in the underlying storage. Therefore, frequent connections to the source systems can put our production systems at risk of being unresponsive or performing poorly. The central repository where we store the data from various data sources is called Staging. We usually store the data in the staging with no or minor changes compared to the data in the data sources. Therefore, the quality of the data stored in the staging is usually low and requires cleansing in the subsequent phases of the data journey. In many BI solutions, we use Staging as a temporary environment, so we delete the Staging data regularly after it is successfully transferred to the next stage, the data warehouse or data marts.

If we want to indicate the data quality with colours, it is fair to say the data quality in staging is Bronze.

Data Warehouse/Data Mart(s)

As mentioned before, the data in the staging is not in its best shape and format. Multiple data sources disparately generate the data. So, analysing the data and creating reports on top of the data in staging would be challenging, time-consuming and expensive. So we require to find out the links between the data sources, cleanse, reshape and transform the data and make it more optimised for data analysis and reporting activities. We store the current and historical data in a data warehouse. So it is pretty normal to have hundreds of millions or even billions of rows of data over a long period. Depending on the overall architecture, the data warehouse might contain encapsulated business-specific data in a data mart or a collection of data marts. In data warehousing, we use different modelling approaches such as Star Schema. As mentioned earlier, one of the primary purposes of having a data warehouse is to keep the history of the data. This is a massive benefit of having a data warehouse, but this strength comes with a cost. As the volume of the data in the data warehouse grows, it makes it more expensive to analyse the data. The data quality in the data warehouse or data marts is Silver.

Extract, Transfrom and Load (ETL)

In the previous sections, we mentioned that we integrate the data from the data sources in the staging area, then we cleanse, reshape and transform the data and load it into a data warehouse. To do so, we follow a process called Extract, Transform and Load or, in short, ETL. As you can imagine, the ETL processes are usually pretty complex and expensive, but they are an essential part of every BI solution.

Continue reading “Business Intelligence Components and How They Relate to Power BI”

Optimising OData Refresh Performance in Power Query for Power BI and Excel

OData has been adopted by many software solutions and has been around for many years. Most solutions are using the OData is to serve their transactional processes. But as we know, Power BI is an analytical solution that can fetch hundreds of thousands (or millions) rows of data in a single table. So, obviously, OData is not optimised for that kind of purpose. One of the biggest challenges many Power BI developers face when working with OData connections is performance issues. The performance depends on numerous factors such as the size of tables in the backend database that the OData connection is serving, peak read data volume over periods of time, throttling mechanism to control over-utilisation of resources etc…

So, generally speaking, we do not expect to get a blazing fast data refresh performance over OData connections, that’s why in many cases using OData connections for analytical tools such as Power BI is discouraged. So, what are the solutions or alternatives if we do not use OData connections in Power BI? Well, the best solution is to migrate the data into an intermediary repository, such as Azure SQL Database or Azure Data Lake Store or even a simple Azure Storage Account, then connect from Power BI to that database. We must decide on the intermediary repository depending on the business requirements, technology preferences, costs, desired data latency, future support requirement and expertise etc…

But, what if we do not have any other options for now, and we have to use OData connection in Power BI without blasting the size and costs of the project by moving the data to an intermediary space? And.. let’s face it, many organisations dislike the idea of using an intermediary space for various reasons. The simplest one is that they simply cannot afford the associated costs of using intermediary storage or they do not have the expertise to support the solution in long term.

In this post, I am not discussing the solutions involving any alternatives; instead, I provide some tips and tricks that can improve the performance of your data refreshes over OData connections in Power BI.

Notes

The tips in this post will not give you blazing-fast data refresh performance over OData, but they will help you to improve the data refresh performance. So if you take all the actions explained in this post and you still do not get an acceptable performance, then you might need to think about the alternatives and move your data into a central repository.

If you are getting data from a D365 data source, you may want to look at some alternatives to OData connection such as Dataverse (SQL Endpoint), D365 Dataverse (Legacy) or Common Data Services (CDS). But keep in mind, even those connectors have some limitations and might not give you an acceptable data refresh performance. For instance, Dataverse (SQL Endpoint) has 80MB table size limitation. There might be some other reasons for not getting a good performance over those connections such as having extra wide tables. Believe me, I’ve seen some tables with more than 800 columns.

Some suggestions in this post apply to other data sources and are not limited to OData connections only.

Suggestion 1: Measure the data source size

It is always good to have an idea of the size of the data source we are dealing with and OData connection is no different. In fact, the backend tables on OData sources can be wast. I wrote a blog post around that before, so I suggest you use the custom function I wrote to understand the size of the data source. If your data source is large, then the query in that post takes a long time to get the results, but you can filter the tables to get the results quicker.

Suggestion 2: Avoid getting throttled

As mentioned earlier, many solutions have some throttling mechanisms to control the over-utilisation of resources. Sending many API requests may trigger throttling which limits our access to the data for a short period of time. During that period, our calls are redirected to a different URL.

Tip 1: Disabling Parallel Loading of Tables

One of the many reasons that Power BI requests many API calls is loading the data into multiple tables in Parallel. We can disable this setting from Power BI Desktop by following these steps:

  1. Click the File menu
  2. Click Options and settings
  3. Click Options
  4. Click the Data Load tab from the CURREN FILE section
  5. Untick the Enable parallel loading of tables option
Disabling Parallel Loading of Tables in Power BI
Disabling Parallel Loading of Tables in Power BI Desktop
Continue reading “Optimising OData Refresh Performance in Power Query for Power BI and Excel”

Power BI 101, Report Authoring Tools

This is my last blog post in 2021. I wish you all a wonderful break and a happy new year.

In the first post of my Power BI 101 series, we learnt that Power BI is a data platform containing various tools and services. We also explained the currently available subscriptions within the Power BI platform. The focus of the second post of this series is on what we should learn to achieve our goals more efficiently. In this post, we focus on the reporting tools available to us according to our subscription plan. From this post onwards, we discuss more specific aspects of the Power BI platform.

We learnt so far that Power BI is not just a reporting tool to build sophisticated reports; it is indeed a platform supplying a wide range of features from data preparation, data modelling and data visualization to contribute to an organisation’s data analysis journey in many ways such as sharing datasets, reports, and dashboards. All of these are possible only if we take the correct steps in building our Power BI ecosystem. But, it is very true that Power BI gives us the flexibility to create professional-looking and eye-catching visualisations providing easy to understand insights around a subject. The most renowned tool within Power BI is Power BI Desktop, but it is not the only tool available to us to create reports. Besides, Power BI Desktop reports are not necessarily the best answer to all business requirements. In fact, the business requirements define the Power BI architecture that supports those requirements. Based on the architecture, organisations decide to acquire a certain subscription plan, and based on the subscription plan, we have various reporting tools available to us. At this point, you might ask, “well, what architecture supports my organisation requires?”. Let’s answer that question in a future blog post.

For the purpose of this blog post, it is enough to know what reporting tools are available under which subscription plans. Let’s get started.

Reporting tools available in Power BI

As mentioned earlier, there are various reporting tools available to us. Let’s first see what reporting tools are available to us regardless of the subscription plans. Then we will look at the subscription plans supporting those tools.

Power BI Service

Power BI Service is a SaaS (Software as a Service) offering from Microsoft in the cloud. The users within an organisation, depending on their access rights, may create reports directly in Power BI Service. The users can also securely share and distribute those reports. While creating or editing reports is possible in Power BI Service, it is strongly recommended to avoid this method for several reasons. The most obvious one is that the changes we make to a report may soon get overwritten by someone else that republishes the same report from Power BI Desktop. Check this blog post from SQLChick to see why you should avoid creating or editing reports directly from Power BI Service. The reports are downloadable in PBIX format. 

You can access Power BI Service here.

Power BI Desktop

It is a desktop application built for data preparation, data modelling and data visualisation. If you like to learn about data modelling with Power BI, check out my book here. We can use Power BI Desktop to connect to more than 250 different data sources, preparing, transforming and cleansing that data and at lastly visualising the data. Power BI Desktop is the predominant and most renowned report authoring tool available in the Power BI platform. It has many more functionalities and is more flexible than Power BI Service. For instance, setting up Role Level Security (RLS) is not available in Power BI Service. The file format of the reports created in Power BI Desktop is PBIX. 

Download Power BI Desktop from here.

Power BI Report Builder (Paginated)

Paginated reports aka pixel-perfect reports are formatted in a way to fit perfectly on a page. That report page might later be printed. We have exact control over page formatting to display our data in tables or charts. The reports are not as interactive as the reports created in Power BI Desktop.

Paginated reports are based on RDL technology which is standard report format in SQL Server Reporting Services (SSRS). The tool for developing a paginated report in the Power BI ecosystem is Power BI Report Builder. The reports file type is RDL. We can currently publish Paginated reports only to a Workspace that is backed with either a Premium Per User (PPU) or a Premium Capacity. 

Download Power BI Report Builder from here.

Power BI Desktop Optimised for Report Server (RS)

Power BI Report Server (PBIRS) is an on-premises server capable of rendering Power BI report files (PBIX). If we have a PBIRS up and running within our organisation and we require to publish Power BI reports to PBIRS, then we will need to create our reports in a special edition of Power BI Desktop which is optimised for PBIRS. This edition is different from Power BI Desktop, which we usually use to create and publish our reports to Power BI Service. For instance, Power BI Desktop RS does not include the preview features we used to see in Power BI Desktop until those features are released. Building reports in Power BI Desktop RS guarantees that the reports are fully functional after being deployed to our PBIRS. We can install Power BI Desktop and Power BI Desktop RS side-by-side on the same machine. 

Download Power BI Desktop RS from here.

Continue reading “Power BI 101, Report Authoring Tools”

Combining X Number of Rows in Power Query for Power BI, Excel and Power Query Online

Combining X Number of Rows in Power Query for Power BI, Excel and Power Query Online

A while back, I was working on a project involving getting data from Excel files. The Excel files contain the data in sheets and tables. Getting the data from the tables is easy. However, the data in the sheets have some commentaries on top of the sheet, then the column names and then the data itself. Something like below:

Sample data
Sample data

This approach is pretty consistent across many Excel files. The customer wants to have the commentary in the column names when the data is imported into Power BI. So the final result must look like this:

Sample Data to be loaded into Power BI
Sample Data to be loaded into Power BI

The business requirement though is to combine the first 3 rows of data and promote it as the column name.

The Challenge

Let’s connect the Excel file and look at the data in Power BI Desktop.

Connecting to sample data from Power BI Desktop
Connecting to sample data from Power BI Desktop

As you can see in the preceding image, Power BI, or more precisely, Power Query, sees the data in Table format. After we click the Transform Data button, this is what we get in Power Query Editor:

Connected to sample data from Power Query in Power BI Desktop
Connected to sample data from Power Query in Power BI Desktop

We all know that tables consist of Columns and Rows. The conjunction of a column and a row is a Cell. What we require to do is to concatenate the values of cells from the first three rows. We also have to use a Space character to separate the values of each cell from the others.

Column, rows and cells in a Table in Power BI
Column, rows and cells in a Table

In Power Query, we can get each row of data in as a Record with the following syntax:

Table{RecordIndex}

In the above syntax, the Table can be the results of the previous transformation step, and the RecordIndex starts from 0. So to get the first row of the table in the preceding image, we use the following syntax:

#"Changed Type"{0}

Where the #"Changed Type" is the previous step. Here are the results of running the preceding expression:

Getting the first row of a Table
Getting the first row of a Table

So we can get the second and third rows with similar expressions. The following image shows the entire codes in the Advanced Editor:

Power Query expressions in Advanced Editor in Power BI Desktop
Power Query expressions in Advanced Editor

But how do we concatenate the values of the rows?

Continue reading “Combining X Number of Rows in Power Query for Power BI, Excel and Power Query Online”